

CPDS Instruments Aboard the ISS

K.T. Lee¹, J. Flanders², E. Semones², T. Shelfer², F. Riman³

- (1) University of Houston, 4800 Calhoun Rd., Houston, TX 77204 (2) Lockheed Martin Space Operations, 1300 Hercules Suite 100, Houston, TX 77058
 - (3) Jacobs Sverdrup, 2224 Bay Area Blvd., Houston, TX 77058

Introduction

- CPDS Charged Particle Directional Spectrometer
- IV instrument is placed inside the USA Laboratory module of the ISS and it was activated on April 21, 2001
- EV instrument is mounted on the S0 truss of the ISS, and was activated in late April 2002
- Instruments are presently taking data which is used for operational radiation dose level indicators
- Instruments are also capable of particle and energy identification
- These data can provide information about the composition of the lower radiation belts, shielding provided by Earth's magnetosphere, and differences in the radiation environments inside and outside the ISS

EV-CPDS

IV-CPDS

Detector Details

A Detectors

- Square Si detector, 30.0x30.0mm, 1.0mm thick
- Top and bottom brass noise shield 5mil (0.127mm) thick

PSD Detectors

- Square Si strip detector, 24.0x24.0mm, 0.300mm thick
- 24 strips on top surface and 24 strips on bottom surface, perpendicular to each other

B Detectors

 Cylindrical Lithium drifted Si detector, 58.4mm in diameter, 5mm thick.

C Detector

- Sapphire 50mm in diameter, and 10mm thick
- Hamamatsu PMT

CPDS Collected Data

Counter Data

- Individual detector count rates for A1, A2, A3, B2, B4, B6 and C.
- Number of events above detector threshold.
- Written to file every minute.
- Event Data (Requires Trigger, A1 A2 coincidence)
 - ADC value (ΔE) from A, B, and C detectors.
 - ADC value (△E) and strip location for up to two events for each PSD detector plane.
 - Written to file every trigger.

Engineering Data

- Board and detector temperatures, power consumption, etc.
- Written to file every 30 minutes.

CPDS Capabilities

- Minimum Proton A1 count energy of 20MeV.
- Minimum Proton coincident energy of 30MeV.
- Maximum stopping proton energy of ~95MeV
- Low energy H and He ion separation (stopping particles)
- Charged particle separation for minimum ionizing particles up to Z=11.
- Energy spectrum for charges with Z<4.</p>
- Proton spectrum up to ~120MeV and Helium up to ~300MeV/n.

Stopping Particles

Protons

Current Work

- A1 and A2 thresholds were changed last week. This will increase the number of high energy protons that are triggered on.
- Characterize the trigger threshold
- Data corrections (time stamp)
- ISS instrument comparison

ISS Instruments LET Spectra

Threshold Change

Summary

- The analysis of the CPDS instrument data (early 2002-present) has begun.
- The LEO proton spectrum from 30-120MeV will be measured
- The LEO He spectrum from 50-300MeV/n will be measured
- Minimum ionizing He-Ne relative abundances will be determined.
- The IV and EV offer the unique simultaneous observations inside and outside the ISS.

Calibration

- Detector calibration done using proton
 FLUKA simulation and in flight proton data.
- ADC offset determined by B detector pedestals and A detector offset is equal to zero.
- Scaling factors found by overlaying simulated and real data.

Example Calibration

Data Selection

- Cut on time between successive events (required due to CPU limitations in early data).
- Passes x^2 fit, where $= \frac{1}{n} \sum_{i=0}^{n} (\Delta E_c^i(E, Z, A) \Delta E_m^i)^2$, and n is the number of detectors that contain a signal.
- The calculated energy loss, , is from the Bethe-Bloch equation.
- Cut on $E \times \Delta E$ for stopping particles or fitted energy range for penetrating particles.
- Data selection cuts are optimized using a full Monte Carlo simulation.

CPDS Analysis Plan

NASA

Possible Simulation Improvement

- Test such a simulation algorithm for existing instruments
- Useful for design and development of future instruments.

Monte Carlo Simulation

- FLUKA is used to simulate the expected energy losses in each detector.
- The algorithm simulation includes all processes that are done for data acquisition.
- Initial particle spectrum input is from updated Badhwar-O'Neill model (COSPAR 2004).
- Particles of all ions from H through Fe with energies of 10MeV to 10GeV, with relative abundances according to Simpson (1983).

Monte Carlo and Data Comparison

Flux Calculation

Flux is calculated using

$$\phi = \frac{N(E)}{Gt\Delta E} \frac{1}{\varepsilon_s \varepsilon_d}$$

- G = Geometry factor (3.2 cm² sr for trigger)
- Efficiency from MC
- t = total detection time
- Delta E = energy range
- N(E) = number of particles passing selection requirements